Load Identification in Neural Networks for a Non-intrusive Monitoring of Industrial Electrical Loads

نویسندگان

  • Hsueh-Hsien Chang
  • Hong-Tzer Yang
  • Ching-Lung Lin
چکیده

This paper proposes the use of neural network classifiers to evaluate back propagation (BP) and learning vector quantization (LVQ) for feature selection of load identification in a non-intrusive load monitoring (NILM) system. To test the performance of the proposed approach, data sets for electrical loads were analyzed and established using a computer supported program Electromagnetic Transient Program (EMTP) and onsite load measurement. Load identification techniques were applied in neural networks. The efficiency of load identification and computational requirements was analyzed and compared using BP or LVQ classifiers method. This paper revealed some contributions below. The turn-on transient energy signatures can improve the efficiency of load identification and computational time under multiple operations. The turn-on transient energy has repeatability when used as a power signature to recognize industrial loads in a NILM system. Moreover, the BP classifier is better than the LVQ classifier in the efficiency of load identification and computational requirements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Intelligent Method Based on WNN for Estimating Voltage Harmonic Waveforms of Non-monitored Sensitive Loads in Distribution Network

An intelligent method based on wavelet neural network (WNN) is presented in this study to estimate voltage harmonic distortion waveforms at a non-monitored sensitive load. Voltage harmonics are considered as the main type of waveform distortion in the power quality approach. To detect and analyze voltage harmonics, it is not economical to install power quality monitors (PQMs) at all buses. The ...

متن کامل

Non-Intrusive Appliances Load Monitoring System Using Neural Networks

A non-intrusive appliances load monitoring system has been developed to ascertain the behavior of each electrical appliance in a household by disaggregating the total household load demand. This system does not need to intrude into a house when metering power consumption of each appliance. Therefore, the system has significant cost advantages and is less troublesome to the customers. This paper...

متن کامل

Artificial Neural Network for Non-Intrusive Electrical Energy Monitoring System

This paper discusses non-intrusive electrical energy monitoring (NIEM) system in an effort to minimize electrical energy wastages. To realize the system, an energy meter is used to measure the electrical consumption by electrical appliances. The obtained data were analyzed using a method called multilayer perceptron (MLP) technique of artificial neural network (ANN). The event detection was imp...

متن کامل

Load Identification of Non-intrusive Load-monitoring System in Smart Home

In response to the governmental policy of saving energy sources and reducing CO2, and carry out the resident quality of local; this paper proposes a new method for a non-intrusive load-monitoring (NILM) system in smart home to implement the load identification of electric equipments and establish the electric demand management. Non-intrusive load-monitoring techniques were often based on power ...

متن کامل

A Hybrid Algorithm for Optimal Location and Sizing of Capacitors in the presence of Different Load Models in Distribution Network

In practical situations, distribution network loads are the mixtures of residential, industrial, and commercial types. This paper presents a hybrid optimization algorithm for the optimal placement of shunt capacitor banks in radial distribution networks in the presence of different voltage-dependent load models. The algorithm is based on the combination of Genetic Algorithm (GA) and Binary Part...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007